

Estrategias para el manejo de PRRSV: Actualización sobre muestreo y pruebas para vigilancia

Berenice Munguía-Ramírez, MVZ, MSc

Veterinary Diagnostic & Production Animal Medicine Iowa State University

(Dirección de Cadenas Pecuarias, Pesqueras y Acuícolas, 2021)

Tabla 2. Características de predios según su clasificación frente a PRRS.

Categoría	Excreción (PCR)	Exposición (ELISA)	Signos Clínicos	Obervaciones
Positiva inestable (I)	Positivo	Positivo	Presentes	Incluye granjas con estatus desconocido
Positiva Estable (II-A)	Desconocido	Positivo	Ausentes	Sin proceso de eliminación
Positiva Estable (II-B)	Desconocido	Positivo	Ausentes	Con proceso de eliminación
Negativo Provisional	Negativo	Positivo	Ausentes	Reemplazos ELISA negativos
Negativo	Negativo	Negativo	Ausentes	Libre frente a PRRS

Holtkamp et al., 2011

¿Cúal es tu objetivo?

• ¿Detección? • "Sincronizar" el uso de vacuna? • ¿Eliminar PRRSV?

Plan de acción para lograr el objetivo

Guía para un plan de vigilancia sostenible:

1. Guía para la toma de muestras.

- a) Tipo de muestra, cuántas, y con cuánta frecuencia.
- b) ¿Qué prueba diagnóstica utilizar?

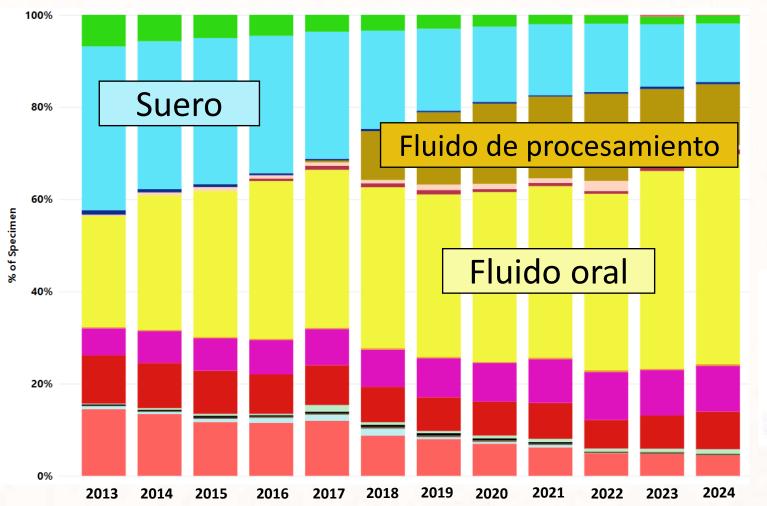
2. ¿Cómo obtener mejores resultados en la PCR?

- c) Importancia del manejo adecuado de la muestra
- d) Uso de controles endógenos

1. Guía para la toma de muestras:

a) Tipo de muestra, cuántas, y con cuánta frecuencia

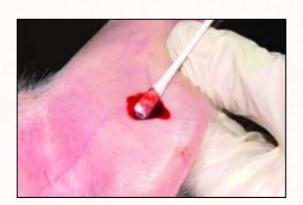
1. Guía para la toma de muestras:


a) Tipo de muestra, cuántas, y con cuánta frecuencia

Muestras utilizadas rutinariamente para el diagnóstico de PRRSV por PCR

Oral Fluid Oropharyngeal Swab
Serum Tissue Fluid Lung
Processing Fluid Semen
Multiple Nasal Swab
Blood/Blood Swab Environmental
Feces Fetal tissue Other

(SDRS, 2024)



MUESTRAS DISCRETAS

Colectadas en un punto en el tiempo, de una fuente y locación específica.

INDIVIDUALES

- Suero
- Hisopado de sangre
- Hisopado oral/orofaríngeo
- Hisopado nasal
- Semen
- Tejido

AGREGADAS

- Fluidos orales
- Fluidos de procesamiento
- Muestras ambientales

MUESTRAS INDIVIDUALES

Común para el muestreo de distribución binomial y muestreo dirigido.

- Información a nivel individual
- Demanda tiempo, labor, y costo.

MUESTRAS INDIVIDUALES: El problema?

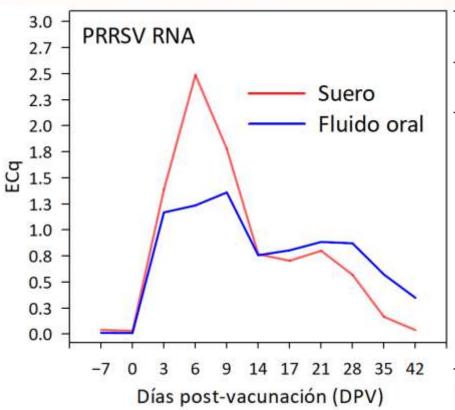
La estructura actual de las poblaciónes porcinas compromete el uso de muestras individuales!

MUESTRAS AGREGADAS

- Información a nivel poblacional Muestra representativa!
- Facilidad y rapidez de recolección + reducción en costo.
- Permite monitoreo continuo (facilidad de colección).
- Variación en sensibilidad diagnóstica.
 - % cerdos positivos.
 - Etapa de infección.

- Variación en sensibilidad diagnóstica.
 - % cerdos positivos.
 - Etapa de infección.

Detección en función de la etapa de infección


Tasa de detección de positividad a PRRSV a través del tiempo

	Método	Día post-exposición a PRRSV										
	diagnóstico	n	3	7	14	28	42	77	98	175		
•	PRRSV RNA en suero	973	94%	92%	87%	72%	48%	7%	2%	0%		
•	PRRSV infeccioso (bioensayo)	168	ND	77%	74%	68%	61%	41%	30%	7%		
•	<mark>Anticuerpos en suero</mark>	1866	ND	ND	92%	92%	92%	91%	91%	90%		

(Henao-Díaz et al., 2020)

Detección en función de la etapa de infección

Tasa de detección de positividad a PRRSV a través del tiempo

	Día po	ost-ex	posi	ción a	PRRS	SV	
3	7	14	28	42	77	98	175
94%	92%	87%	72%	48%	7%	2%	0%
ND	77%	74%	68%	61%	41%	30%	7%
ND	ND	92%	92%	92%	91%	91%	90%

(Henao-Díaz et al., 2020)

(Munguía-Ramírez et al., 2023)

Muestras INDIVIDUALES vs AGREGADAS

Probabilidad de detectar PRRSV en un corral usando 1 muestra de fluidos orales:

% Prevalencia		fluido oral (FO) % CI)	# de sueros necesarios para iguala la probabilidad de detección. (95% CI)					
en corral	PRRSV RNA	PRRSV Ab	PRRSV RNA	PRRSV Ab				
5	0.31 (0.09, 0.67)	0.17 (0.06, 0.38)	8 (3, 17)	5 (2, 10)				
10	0.79 (0.48, 0.94)	0.59 (0.37, 0.77)	11 (5, 16)	7 (4, 10)				
15	0.94 (0.76, 0.99)	0.85 (0.67, 0.94)	12 (8, 16)	9 (6, 12)				
20	0.98 (0.88, 1.00)	0.94 (0.82, 0.98)	13 (8, 16)	10 (7, 13)				
25	0.99 (0.93, 1.00)	0.97 (0.90, 0.99)	13 (9, 16)	11 (8, 13)				

Munguía-Ramírez et al. Capítulo en: Optimising pig herd health and production. Burleigh Dodds Science Publishing

Nuevas recomendaciones para la toma de fluidos orales:

Una sola cuerda por corral!

- Corrales ≤25 cerdos → 30 min es suficiente.
- Corrales >25 cerdos \rightarrow 60 90 min incrementa participación.

Tiempo de cuerda acorde a prevalencia

- Alta prevalencia → 30 min es suficiente.
- Prevalenca desconocida o granja negativa $\rightarrow \geq 60$ min.

(Tarasiuk, G., comunicación personal)

1. Guía para la toma de muestras:

a) Tipo de muestra, cuántas, y con cuánta frecuencia

- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- 4. Fijo espacial Muestreo equidistante

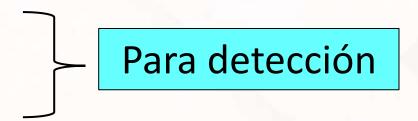
- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- **4.** Fijo espacial Muestreo equidistante

Para detección

Para estimar prevalencia

- 1. Poblacional Todos los animales
- Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- 4. Fijo espacial Muestreo equidistante

Programa de erradicación de la PPC en Estados Unidos (1978).



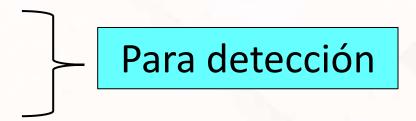
DEXX AquaLab

- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos

Selección de subpoblaciones con características indicativas de enfermedad.

- Signología clínica
- Mortalidad????

Útil para enfermedades de baja prevalencia!


- 1995 Campaña Nacional contra la fiebre porcina clásica (NOM-037-ZOO-1995)
- 2021 Recomendado por la Autoridad Europea de Seguridad Alimentaria (EFSA) para PPC y FPA

- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos

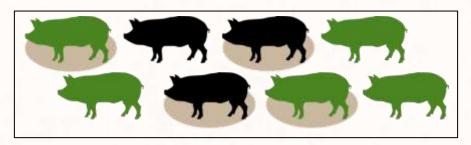
4. Fijo espacial – Muestreo equidistant

Nota: No se puede excluir la presencia de enfermedad en estadíos tempranos (sin signos/sin mortalidad)

- Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- 4. Fijo espacial Muestreo equidistante

Para detección

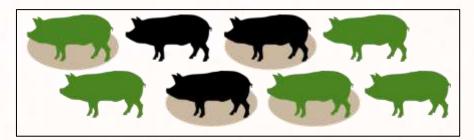
Para estimar prevalencia



- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- 4. Fijo espacial Muestreo equidistante

Para detección

Para estimar prevalencia


Selección aleatoria de cerdos

3. Representativo/binomial

Selección aleatoria de cerdos

< 100 cerdos - pruebe 25

≥ 1,000 - pruebe 29

Tabla de tamaños muestrales basada en un muestreo aleatorio

population size (N)	50%	40%	30%	25%	20%	151	104	54	21	14	0.5%	0.1
10	4	5	6	7	8	10	10	10	10	10	10	10
20	4	6	7	9	10	12	16	19	20	20	20	20
30	4	6 6 6	8	9	11	14	19	26	30	30	30	30
40	5	6	6	10	12	15	21	31	40	40	40	40
. 50	5	6	8	10	12	16	22	35	48	50	50	50
60	5	6	8	10	12	16	23	38	55	60	60	60
70	5	6	8	10	13	17	24	40	62	70	70	70
80	5	6	8	10	13	17	24	42	68	79	80	80
90	5	6	8	10	13	17	25	43	73	87	90	90
100	5	6	9	10	13	17	25	45	78	96	100	100
120	5	6	9	10	13	18	26	47	86	111	120	120
140			9	11	13	18	26	48	92	124	139	140
160	5	6	9	11	13	18	27	49	97	136	157	160
180	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6	9	11	13	18	27	50	101	146	174	180
200	5	6	9	11	13	18	-27	-51	105	155	190	200
250	5	6	9	11	14	18	27	53	112	175	228	250
300	5	6	9	11	14	18	28	. 54	117	189	260	300
350	5	6	9	11	14	18	28	54	121	201	287	350
400	1 5	6	9	11	14	19 .	28	55	124	. 211	311	400
450	5	6	9	11	14	- 19	28	55	127	218	331	450
500	5	6	9	11	14	19	28	56	129	225	349	500
. 600	5	. 6	9	11 .	14	19	28	56	132	235	379	597
700	5	6	. 9	11 .	14	19	28	57	134	243	402	691
800	5	6 .	9	11	14	19	26	. 57	136	249	421	782
900	5	6	9	11	14	19	28	57	137	254	. 437	868
1000	5	6	9	11	14	19	29	57	138	258	450	950

(Cannon y Roe, 1982)

3. Representativo/binomial

Tabla de tamaños muestrales basada en ur muestreo aleatorio

<	cerdos	- [orue	be 25

≥ 1,		_	pruek	oe 29	
------	--	---	-------	-------	--

					40		
					49		
				- 19			

(Cannon y Roe, 1982)

3. Representativo/binomial

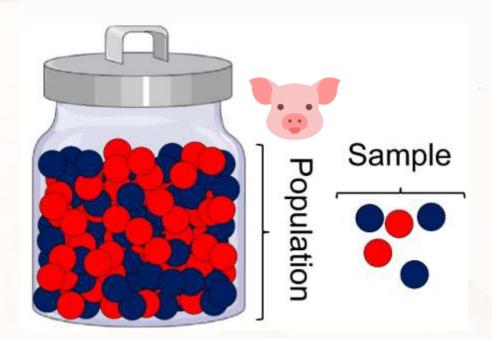
El problema:

Los números de la tabla provienen de la fórmula de distribución binomial:

$$P(x) = \frac{n!}{(n-x)!x!} p^x q^{n-x}$$

n = the number of trials (or the number being sampled)

x = the number of successes desired

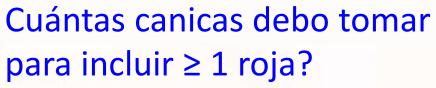

p = probability of getting a success in one trial

q = 1 - p =the probability of getting a failure in one trial

3. Representativo/binomial

Asume

- a) Población homogénea y finita.
 - Cerdos al azar tienen la misma probabilidad de ser positivos
- b) Independencia.
 - El estado infeccioso de un cerdo no es predictivo del otro.
- c) Resultado binario.
 - Positivo/negativo


3. Representativo/binomial

Asume

- a) Población homogénea y finita.
- b) Independencia.
- c) Resultado binario.

Respuesta =

Tabla	de	tan	nan	os r	nue	estra	aies	ba	sada	a er	un	
			mu	estr	eo	alea	ator	io				
Población	Prev	alencia	(%)									
(N)	50%	401	304	25%	20%	154	101	54	24	14	0.5%	0.1
10	4	5	6	7	8	10	10	10	10	10	10	10
20	4	6	7	9	10	12	16	19	20	20	20	20
30	4	6	8	9	11	14	19	26	30	30	30	30
40	5	6	8	10	12	15	21	31	40	40	40	40
. 50	5	6	8	10	12	16	22	35	48	50	50	50
60	5	6	8	10	12	16	23	38	55	60	60	60
70	1 5	6	8	10	13	17	24	40	62	70	70	70
80	5	6	8	10	13	17	24	42	68	79	80	80
90	1 5	6	8	10	13	17	25	43	73	87	90	90
100	5	6	9	10	13	17	25	45	78	96	100	100
120	5	6	9	10	13	18	26	47	86	111	120	120
140	5	6	9	11	13	18	26	48	92	124	. 139	140
160	5	6	9	11	13	18	27	- 49	97	136	157	160
180	5	6	9	11	13	18	27	50	101	146	174	. 180
200	5	6	9	11	13	18	27	-51	105	155	190	200
250	5	6	9	11	14	18	27	53	112	175	228	250
300 '	1 5	6	9	11	14	18	28	. 54	117	189	260	300
350	5	6	9	11	14	18	28	54	121	201	287	350
400	1 5	6	. 9	11	14	19	28	55	124	. 211	311	400
450	5 5 5	6	9	11	14	. 19	28	55	127	218	331	450
500	5	6	9	11	14	19	26	56	129	225	349	500
600	5	. 6	9	11	14	19	28	56	132	235	379	597
700	5	. 6	9	11	14	19	28	57	134	243	402	691
800	5	6 .	9	11	14	19	26	. 57	136	249	421	782
900	1 5	6	9	11	14	19	28	57	137	254	437	868
1000	1 5	6	9	11	14	19	29	57	138	258	450	950

- n = 100.
- Prevalencia = 10% rojas.

			mu	<u>estr</u>	eo	alea	ator	10				
Población	Prev	alencia	(%)									
(N)	50%	404	30%	25%	20%	154	101	54	24	14	0.51	0.1
10	1	5	6	7	8	10	10	10	10	10	10	10
20	4	6	7	9	10	12	16	19	20	20	20	20
30	4	6	8	9	11	14	19	26	30	30	30	30
40	5	6	6	10	12	15	21	31	40	40	40	40
. 50	5	6	8	10	12	16	22	35	48	50	50	50
60	5	6	8	10	12	16	23	38	55	60	60	60
70	5	6	8	10	13	17	24	40	62	70	70	70
80	5	6	8	10	13	17	24	42	68	79	80	80
90	5	6	8	10	13	17	25	43	73	87	90	90
100	5	6	9	10	13	17	25	45	78	96	100	100
120	5	6	9	10	13	18	26	47	86	111	120	120
140	5	6	9	11	13	18	26	48	92	124	. 139	140
160	5	6	9	11	13	18	27	- 49	97	136	157	160
180	5	6	9	11	13	18	27	50	101	146	174	180
200	5	6	9	11	13	18	27	-51	105	155	190	200
250	5	6	9	11	14	18	27	53	112	175	228	250
300	5	6	9	11	14	18	28	. 54	117	189	260	300
350	5	6	9	11	14	18	28	54	121	201	287	350
400	5	6	. 9	11	14	19	28	55	.124	. 211	311	400
450	5	6	9	11	14	- 19	28	55	127	218	331	450
500	5	6	9	11	14	19	26	56	129	225	. 349	500
600	5	. 6	9	11	14	19	28	56	132	235	379	597
700	5	6	. 9	11	14	19	28	57	134	243	402	691
800	5	6 .	9	11	14	19	26	- 57	136	249	421	782
900	5	6	9	11	14	19	28	57	137	254	437	868
1000	5	6	9	11	14	19	29	57	138	258	450	950

- a) Población homogénea y finita.
- b) Independencia.
- c) Resultado binario.

Aplicable?

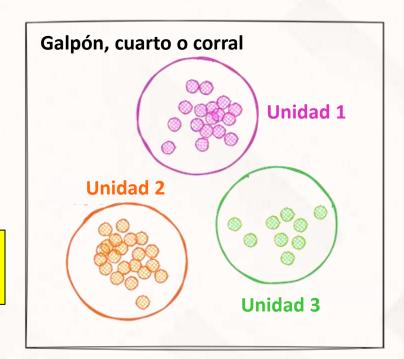
Poblaciones pequeñas o de estructura simple.

Tabla	de	tan	nan	os r	nue	estra	ales	bas	sada	a er	un	l
			mu	estr	eo	alea	ator	io				
Población	Prev	alencia	(%)									
(N)	50%	404	30%	25%	20%	154	101	54	24	14	0.5%	0.1
10	4	5	6	7	8	10	10	10	10	10	10	10
20	4	6	7	9	10	12	16	19	20	20	20	20
30	4	6	8	9	11	14	19	26	30	30	30	30
40	5	6	8	10	12	15	21	31	40	40	40	40
. 50	5	6	8	10	12	16	22	35	48	50	50	50
60	5	6	8	10	12	16	23	38	55	60	60	60
70	5	6	8	10	13	17	24	40	62	70	70	70
80	5	6	8	10	13	17	24	42	68	79	80	80
90	5	6	8	10	13	17	25	43	73	87	90	90
100	5	6	9	10	13	17	25	45	78	96	100	100
120	5	6	9	10	13	18	26	47	86	111	120	120
140	5	6	9	11	13	18	26	48	92	124	. 139	140
160	5	6	9	11	13	18	27	- 49	97	136	157	160
180	5	6	9	11	13	16	27	50	101	146	174	. 180
200	5	6	9	11	13	18	27 -	-51 -	105	155	190	200
250	5	6	9	11	14	18	27	53	112	175	228	250
300	5 5 5 5 5 5	6	9	11	14	18	28	. 54	117	189	260	300
350	5	6	9	11	14	18	28	54	121	201	287	350
400	1 5	6	. 9	11	14	19 -	28	55	124	. 211	311	400
450			9	11	14	- 19	28	55	127	218	331	450
500	5	6	9	11	14	19	26	56	129	225	. 349	500
600	5	. 6	9	11	14	19	28	56	132	235	379	597
700	5	6	. 9	11	14	19	28	57	134	243	402	691
800	5	6 .	9	11	14	19	26	. 57	136	249	421	782
900	1 5	6	9	11	14	19	28	57	137	254	437	868
1000	5	6	9	11	14	19	29	57	138	258	450	950

- a) Población homogénea y finita.
- b) Independencia.
- c) Resultado binario.

Aplicable?

¿Granjas modernas?

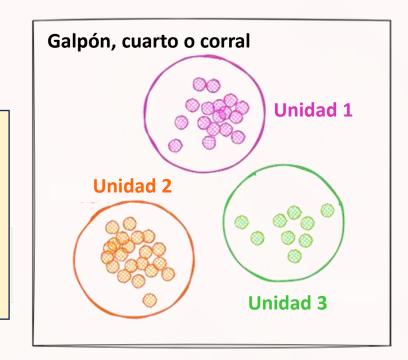


Hay separación en sitios dependiendo de la etapa y/o función productiva:

- Por galpón
- Por cuarto
- Por corrales

¡No aplicable en granjas actuales!

Poca interacción entre grupos!



Hay separación en sitios dependiendo de la etapa y/o función productiva:

- Por galpón
- Por cuarto
- Por corrales

UNIDADES EPIDEMIOLÓGICAS

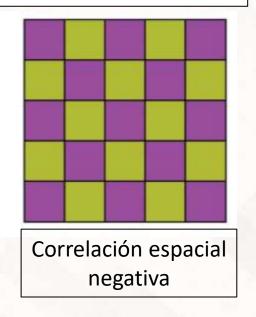
"Grupo de animales en un sitio que comparten un riesgo comparable de exposición."

- 1. Poblacional Todos los animales
- 2. Dirigido Cerdos con signos clínicos
- 3. Representativo/binomial Muestreo al azar
- 4. Fijo espacial Muestreo equidistante

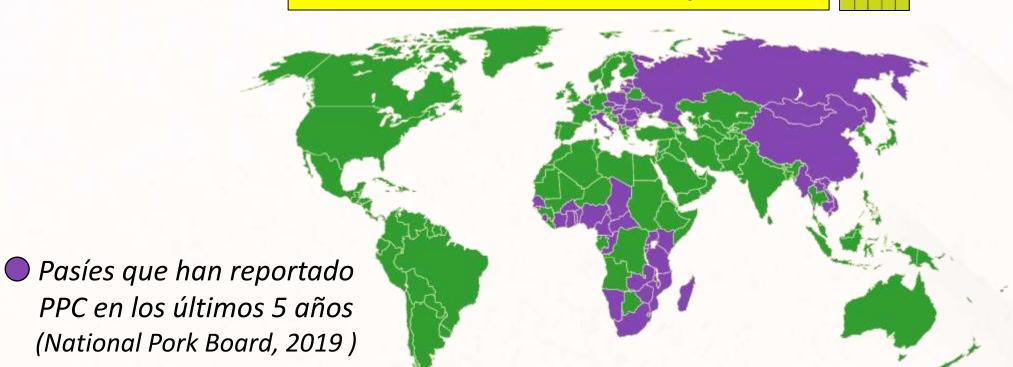
Para detección

Para estimar prevalencia

4. Fijo espacial – Muestreo equidistante


Las enfermedades infecciosas en granja tienden a aglomerarse...

• Es más probable encontrar un estatus infeccioso similar en cerdos físicamente cercanos a otros.

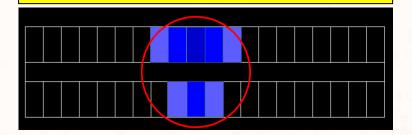

Autocorrelación espacial

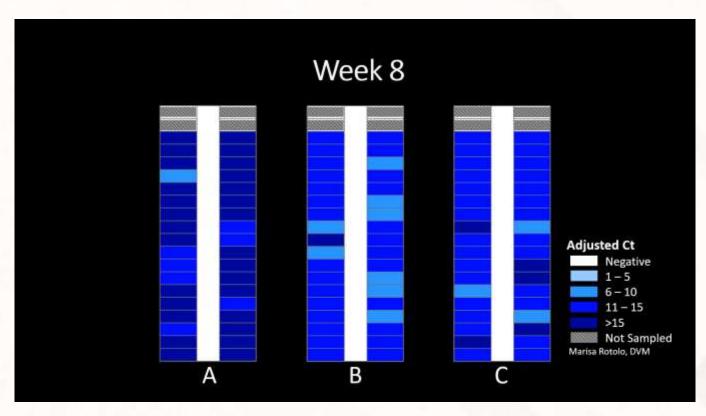
Tendencia de puntos geográficamente cercanos a tener valores similares en una variable dada.

Autocorrelación espacial

"Todo está relacionado con todo, pero las **cosas cercanas** están **más relacionadas** que las cosas distantes."

W. Tobler's first law of geography (1970).





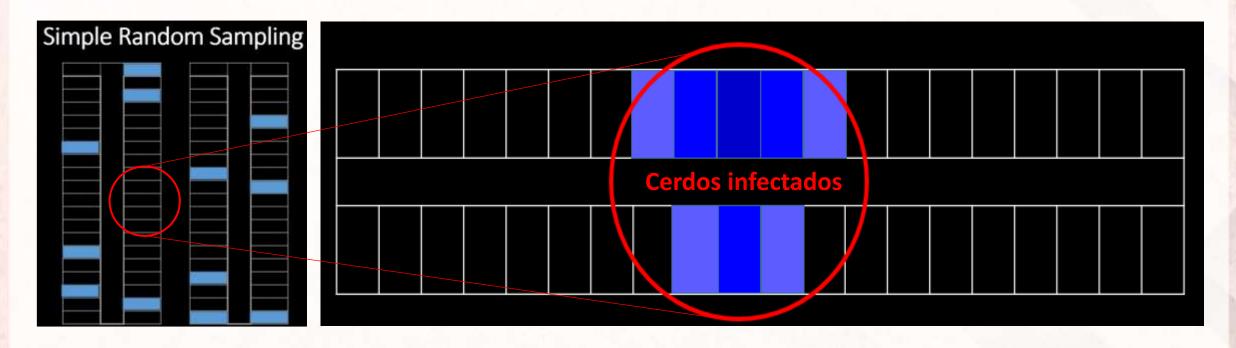
Autocorrelación espacial

Las enfermedades infecciosas en granja tienden a aglomerarse...

Estatus infeccioso similar en cerdos que están físicamente cercanos a otros.

(Rotolo et al., 2017)

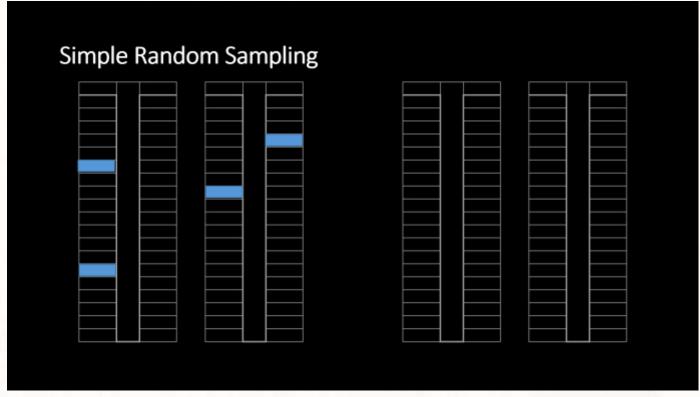
Autocorrelación espacial


Consecuencias de seleccionar cerdos "al azar" (muestreo binomial)

Saltarse el aglomerado de cerdos infectados involuntariamente.

Muestrear multiples veces el mismo aglomerado (icosto innecesario!)

4. Muestreo fijo espacial



Mejor que el muestreo binomial (al azar) cuando hay correlación...

Asignación espacial uniforme de manera que el muestreo se distribuya en

forma equidistante.

1. Guía para la toma de muestras:

a) Tipo de muestra, cuántas, y con cuánta frecuencia

Muestreo fijo espacial – Fluidos orales (Ej.)

No existe una formula universal para determinar el tamaño de muestras...

Recomendaciones

- 1) ¿Cuántas muestras puedo colectar y analizar rutinariamente?
 - \$\$\$\$
- 2) Muestree los mismos corrales!
- 3) La consistencia es clave y lo revela todo!

4 mu	uestras	
3	23	
4	24	
5	25	
6	26	
7	27	
8	28	
9	29	
10	30	
11	31	
12	32	
13	33	
14	34	
15	35	
16	36	
17	37	
18	38	
19	39	
20	40	

2 m	2 muestras								
3		23							
4		24							
5		25							
6		26							
7		27							
8		28							
9		29							
10		30							
11		31							
12		32							
13		33							
14		34							
15		35							
16		36							
17		37							
18		38							
19		39							
20		40							

1 muestra									
3		23							
4		24							
5		25							
6		26							
7		27							
8		28							
9		29							
10		30							
11		31							
12		32							
13		33							
14		34							
15		35							
16		36							
17		37							
18		38							
19		39							
20		40							

Es mejor pocas muestras colectadas frecuententemente que muchas muestras colectadas en un solo punto de tiempo...

	Calendario								
Dom	Lun	Mar	Mie	Jue	Vie	Sáb			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31)						

	Calendario								
Dom	Lun	Mar	Mie	Jue	Vie	Sáb			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31							

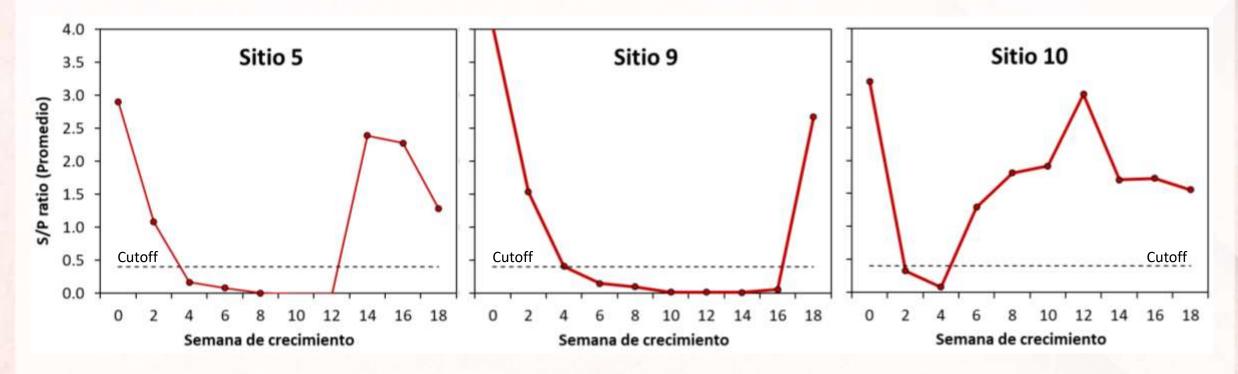
Ej: Granja de destete a finalización (n = 1,100)

10 sitios x 6 corrales en cada caseta

Muestree los mismos corrales, use pocas muestras

Por 18 semanas														
				2					4				6	
	1						3				5			

Muestreo bi-semanal (la consistencia es la clave!)



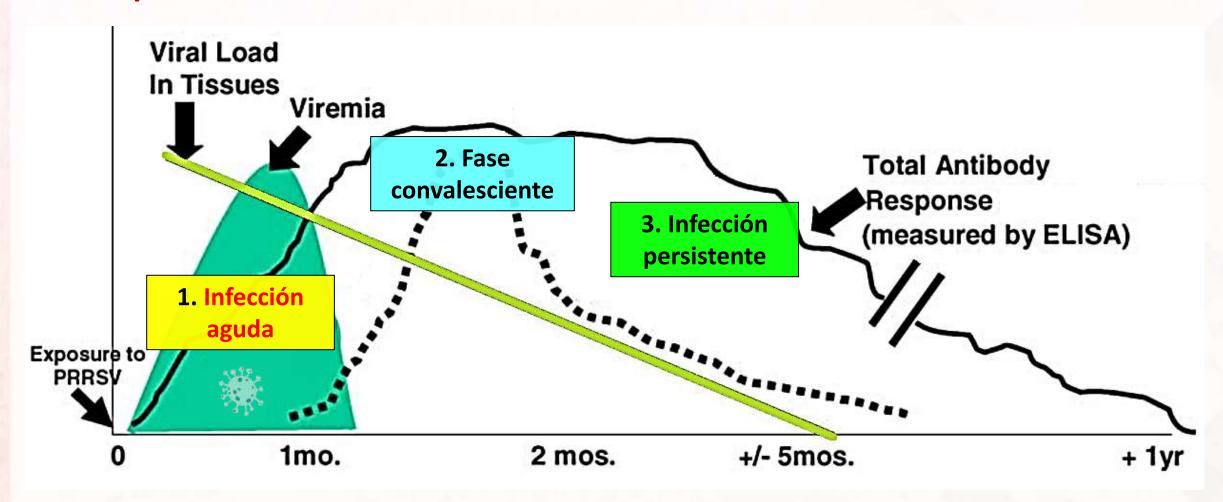
Resultados: Anticuerpos contra PRRSV

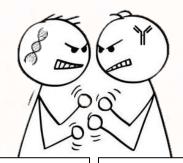
Resultados lógicos y fáciles de entender porque reflejan la respuesta de los cerdos a la infección a través del tiempo.

1. Guía para la toma de muestras:

b) ¿Qué prueba diagnóstica utilizar?

b) ¿Qué prueba diagnóstica utilizar?


PCR vs ELISA/anticuerpo?



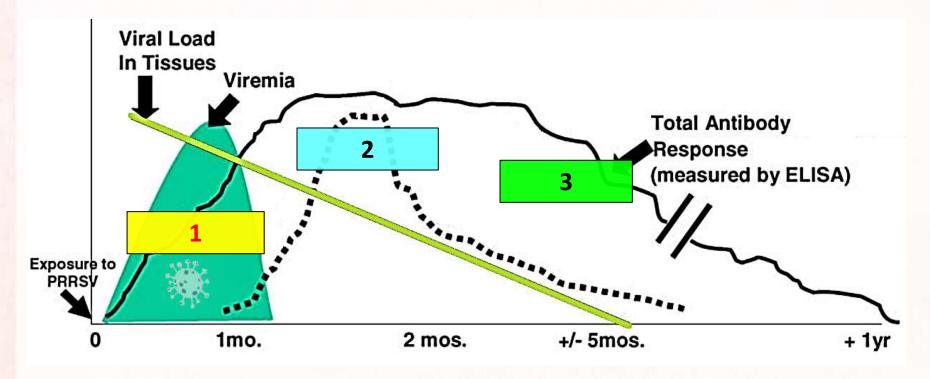
Etapas de transición de PRRSV

(Lopez and Osorio, 2004; Henao-Diaz et al., 2020)

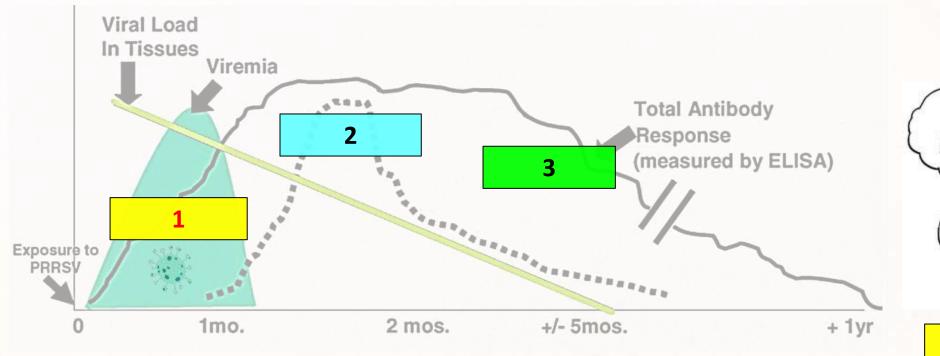
Detecta ARN de PRRSV en la muestra.

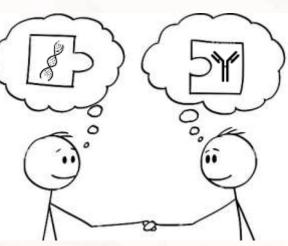
- Estimación de carga viral en la muestra.
- Resultados en cuestión de horas.
- Disponible para gran variedad de muestras.
- Costo: \$25.00 35.00 USD/muestra.
- ARN sensible a altas temperaturas.

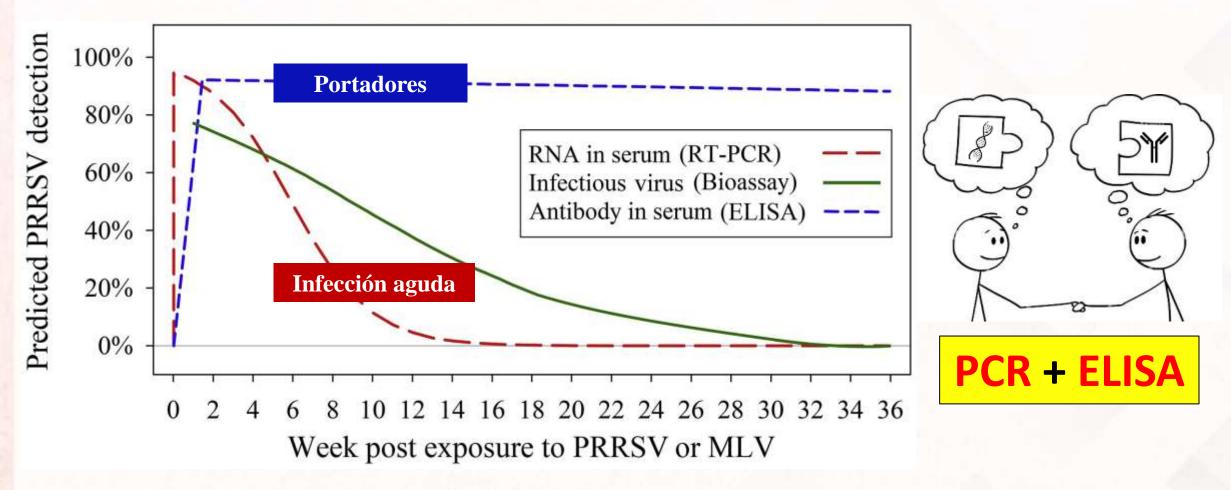
Detecta anticuerpos contra PRRSV.


- Indica infecciones pasadas o recientes.
- Resultados en cuestión de horas.
- Costo: ~\$5.00 7.00 USD/muestra
- Limitado a fluidos que contengan anticuerpos.
- Limitado a granjas libres de PRRSV.

PCR vs ELISA?


- 1 RT-PCR 🐼
- RT-PCR (baja carga viral) 🔔 , ELISA 🤡
- 3 ELISA 🔗


PCR + ELISA!


- 1 RT-PCR 🐼
- RT-PCR (baja carga viral) 🔔 , ELISA 🤡
- 3 ELISA 🔗

PCR + ELISA!

(Henao-Diaz et al., 2020)

Guía para un plan de vigilancia sostenible:

- 1. Guía para la toma de muestras.
- a) Tipo de muestra, cuántas, y con cuánta frecuencia
- b) ¿Qué prueba diagnóstica utilizar?

2. ¿Cómo obtener mejores resultados en la PCR?

- c) Importancia del manejo adecuado de la muestra
- d) Uso de controles endógenos

2. ¿Cómo asegurar los mejores resultados en PCR?

c) Importancia del manejo adecuado de la muestra.

muestra

4. Recepción en laboratorio

5. Procesamiento de muestra

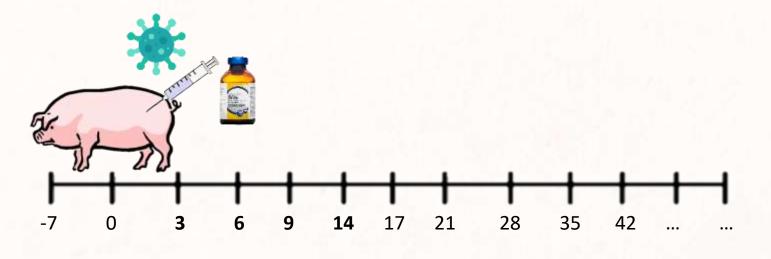
granja

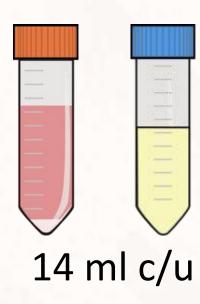
6. Almacenamiento antes de testear

7. Testeo por qPCR

Las muestras colectadas en granja estan expuestas a una variedad de condiciones desfavorables...

¿Me debería preocupar...?

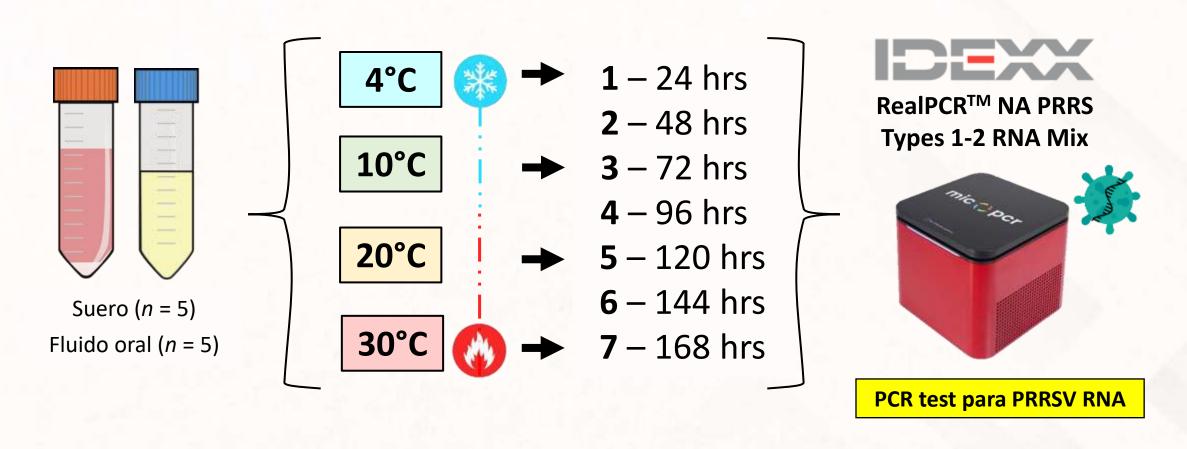

Efecto de la temperatura de almacenamiento en la detección de PRRSV RNA en suero y fluidos orales

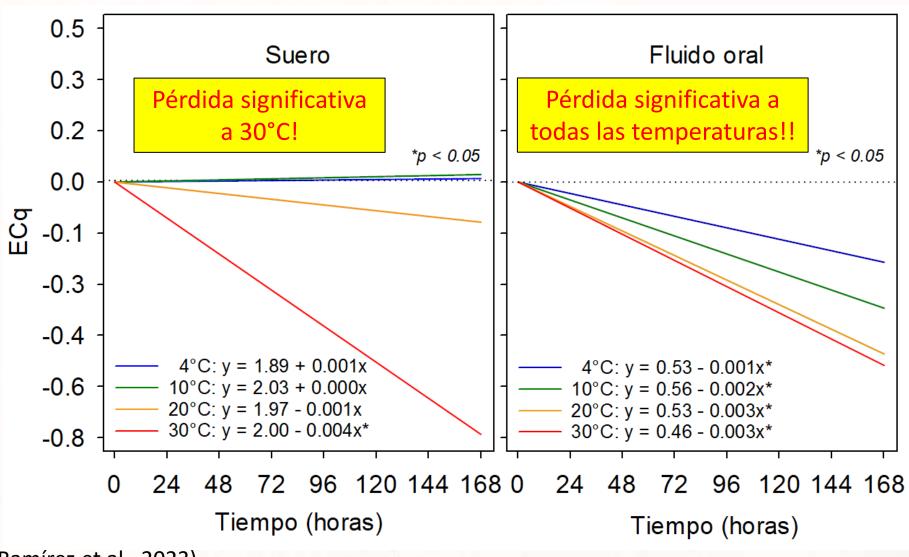

Suero (n = 5)

Cerdos inoculados con PRRSV contemporáneo.

Fluido oral (n = 5)

Cerdos vacunados con Ingelvac® PRRS MLV.



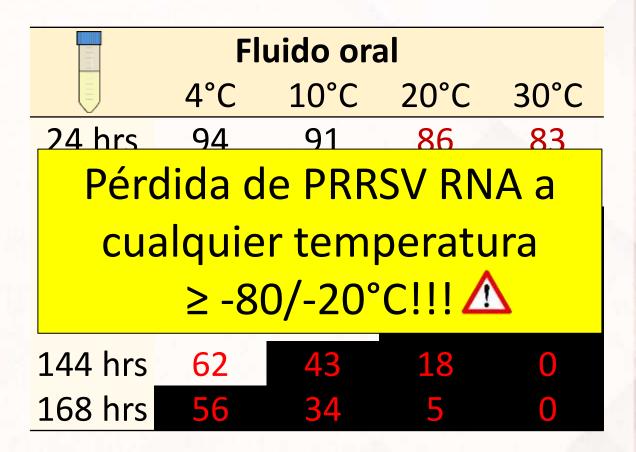

(Munguía-Ramírez et al., 2023)

Muestras divididas en 28 alícuotas de 500 uL

→ Sometidas a 28 tratamientos de temperatura:

Pérdida de PRRSV RNA en función de la (temperatura*tiempo)

(Munguía-Ramírez et al., 2023)

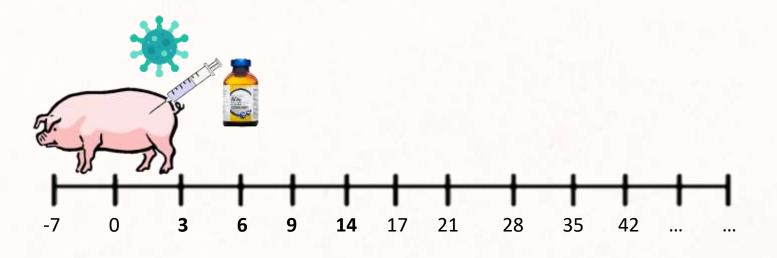

% de PRRSV RNA detectable por PCR

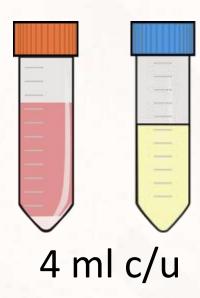
		Suero		
	4°C	10°C	20°C	30°C
24 hrs	100	100	99	95
48 hrs	100	100	98	90
72 hrs	100	100	97	84
96 hrs	100	100	97	79
120 hrs	100	100	96	74
144 hrs	100	100	95	68
168 hrs	100	100	94	63

Fluido oral									
	4°C	10°C	20°C	30°C					
24 hrs	94	91	86	83					
48 hrs	87	81	73	67					
72 hrs	81	72	59	50					
96 hrs	75	62	45	34					
120 hrs	68	52	32	17					
144 hrs	62	43	18	0					
168 hrs	56	34	5	0					

% de PRRSV RNA detectable por PCR

		Suero					
	4°C 10°C 20°C 30°C						
24 hrs	100	100	99	95			
48 hrs	100	100	98	90			
72 hrs	100	100	97	84			
96 hrs	100	100	97	79			
120 hrs	100	100	96	74			
144 hrs	100	100	95	68			
168 hrs	100	100	94	63			

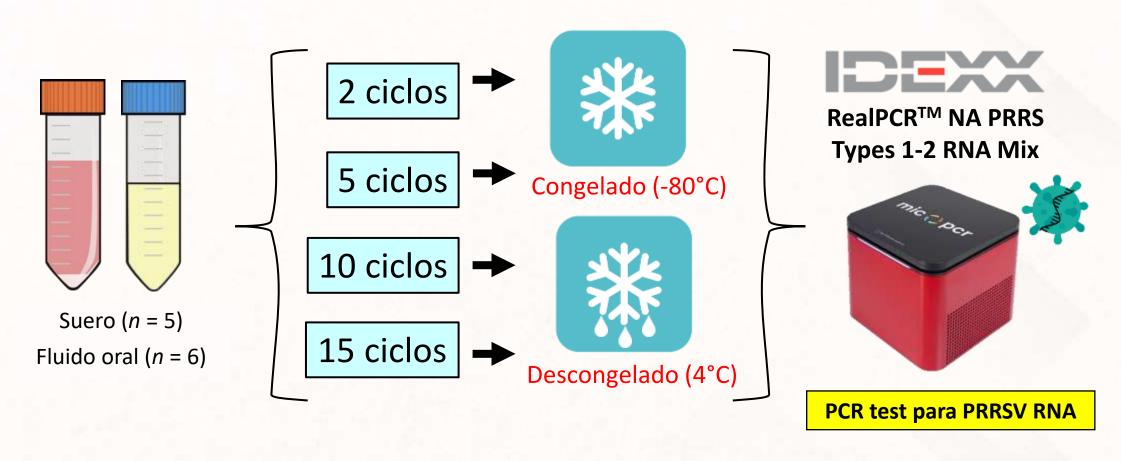

Efecto del congelado-descogelado en la detección de PRRSV RNA en suero y fluidos orales

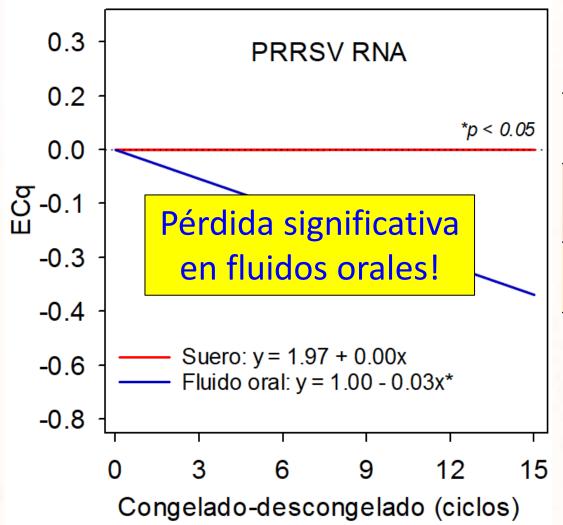

Suero (n = 5)

Cerdos inoculados con PRRSV contemporáneo.

Fluido oral (n = 6)

Cerdos vacunados con Ingelvac® PRRS MLV.




(Munguía-Ramírez et al., 2023)

Muestras divididas en 4 alícuotas de 1 mL

→ Sometidas a 4 tratamientos de congelado-descongelado:

Pérdida de PRRSV RNA en función del (congelado-descongelado)

	% de PRRSV RNA detectable por PCR									
	2 ciclos	5 ciclos	10 ciclos	15 ciclos						
Suero	100	100	100	100						
Fluido oral	95	87	73	60						

Pérdida de PRRSV RNA a > 2 ciclos de congelado-descongelado en fluido oral!

2. ¿Cómo asegurar los mejores resultados en PCR?

d) Uso de controles endógenos.

La prueba de PCR no es perfecta...

- Variaciones en el manejo de la muestra afectan los resultados.
- NO TODAS LAS PRUEBAS DE PCR SE COMPORTAN IGUAL!

Detección de M. hyopneumoniae en fluidos orales por PCR:

Proce	dure	Oral fluid results			
Extraction	PCR	Positive ¹	Negative	Total	
1	19	109 ^c	213	322	
2 diferentes extracciones	3 diferentes PCRs	148 ^{a,b}	174	322	
I	2	173 ^a	149	322	
2	2	134 ^{b,c}	188	322	

(Poeta Silva et al., 2020)

La prueba de PCR no es perfecta...

- Variaciones en el manejo de la muestra afectan los resultados.
- NO TODAS LAS PRUEBAS DE PCR SE COMPORTAN IGUAL!

Detección de M. hyopneumoniae en fluidos orales por PCR:

Proce	dure	Ora	al fluid results
Extraction	PCR	Positive ¹	
1	19	109 ^c	La tasa de positividad
2 diferentes	3 diferentes	148 ^{a,b}	varía por los métodos
extracciones	PCRs PCRs		varia por 103 metodos
1	2	173 ^a	de extracción y PCR!
2	2	134 ^{b,c}	ac extraction y i cit:

(Poeta Silva et al., 2020)

¿Por qué?

- Pobre calidad la muestra
- Diferente personal realizando la prueba
- Contaminación
- Errores en pipeteo
- Eficiencia de las enzimas usadas para RT
- Diferente equipo de extracción o PCR
- Variaciones en el lote de los reactivos

... etc.

4. ¿Cómo asegurar resultados de PCR confiables?

Monitoreando la calidad del procedimiento!

¿Por qué?

- Pobre calidad la muestra
- Diferente personal realizando la prueba
- Contaminación
- Errores en pipeteo
- Eficiencia de las enzimas usadas para RT
- Diferente equipo de extracción o PCR
- Variaciones en el lote de los reactivos

... etc

¿Por qué?

- Pobre calidad la muestra
- ✓ Diferente personal realizando la prueba
- ✓ Contaminación
- √ Errores e Monitoreado en el
- ✓ Eficienc laboratorio mediante as para RT
- ✓ Di controles de extracción y PCR PCR
- √ Variaciones en el lote de los reactivos

• • •

¿Por qué?

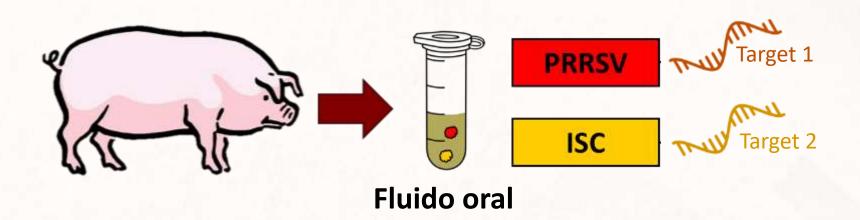
- x Po No monitoreado!s ra
- ✓ Diferente personal realizando la prueba
- ✓ Contaminación
- ✓ Errores e Monitoreado en el
- ✓ Eficienc laboratorio mediante as para RT
- ✓ Di controles de extracción y PCR PCR
- ✓ Variaciones en el lote de los reactivos

• • •

4. ¿Cómo asegurar resultados de PCR confiables?

Monitoreando la calidad del procedimiento!

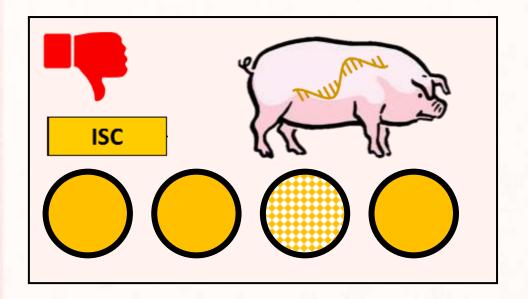
¿Cómo monitorear la calidad de la muestra?

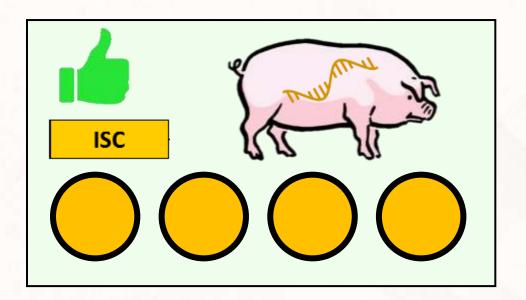

Control endógeno (internal sample control, ISC)

Cuantificación de un gen porcino inherente a la muestra junto a la prueba de PCR para PRRSV.

En la muestra: El gen porcino se encuentra bajo las mismas condiciones de manejo que el RNA de interés (PRRSV).

Verifican la integridad de la muestra desde su colección y transporte



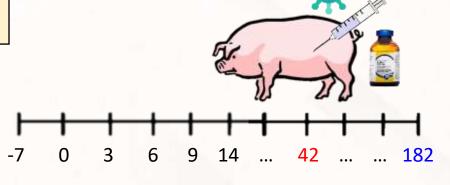


Control endógeno (ISC)

Deben ser **verificados** para su **expression constante** antes de usarse como controles.

Validado bajo las mismas condiciones que el RNA viral de interés.

Muestras (n) = 927



RealPCRTM NA PRRS Types 1-2 RNA Mix 1. Validación en consistencia

Fluido oral
$$(n = 130)$$

Suero
$$(n = 215)$$

Heces
$$(n = 132)$$

2. Establecer valores de referencia para diagnóstico de rutina.

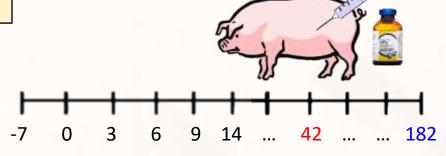
Fluido oral
$$(n = 150)$$

Suero (
$$n = 150$$
)

Hisopado fecal (
$$n = 75$$
)

Heces
$$(n = 75)$$

Muestras (n) = 927



RealPCRTM NA PRRS Types 1-2 RNA Mix 1. Validación en consistencia

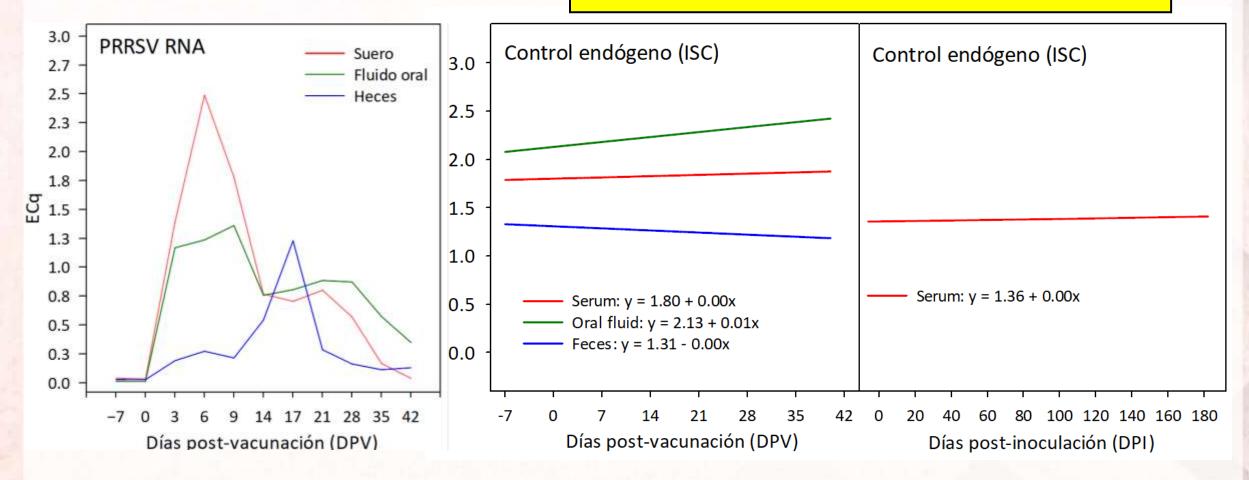
Fluido oral
$$(n = 130)$$

Suero (n = 215)

Heces
$$(n = 132)$$

2. Establecer valores de referencia para diagnóstico de rutina.

Fluido oral
$$(n = 150)$$


Suero (n = 150)

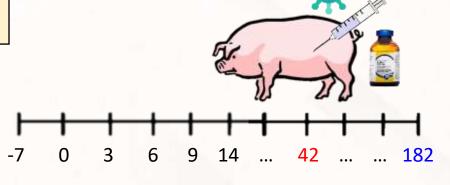
Hisopado fecal (n = 75)

Heces (n = 75)

1. Validación en consistencia

ISC consistente en todas las muestras

Muestras (n) = 927



RealPCRTM NA PRRS Types 1-2 RNA Mix 1. Validación en consistencia

Fluido oral
$$(n = 130)$$

Suero
$$(n = 215)$$

Heces
$$(n = 132)$$

2. Establecer valores de referencia para diagnóstico de rutina.

Fluido oral
$$(n = 150)$$

Suero (
$$n = 150$$
)

Hisopado fecal (
$$n = 75$$
)

Heces
$$(n = 75)$$

Muestras (n) = 927

RealPCRTM NA PRRS Types 1-2 RNA Mix 1. Validación en consistencia

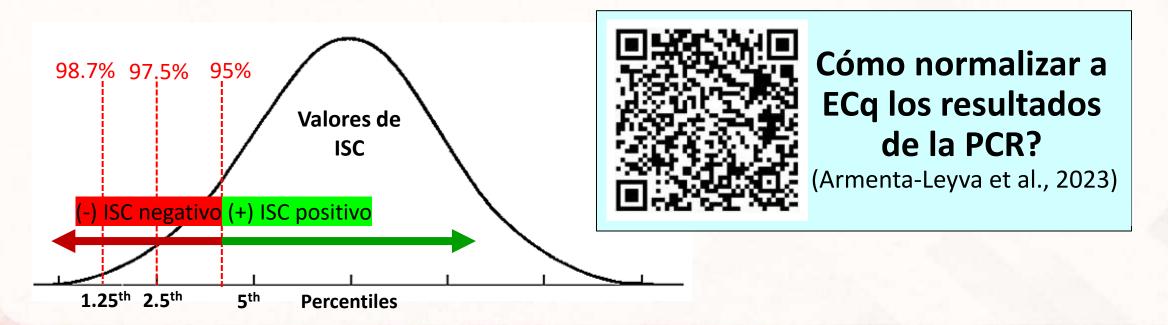
Fluido oral (n = 130)

Suero (*n* = 215)

Heces (n = 132)

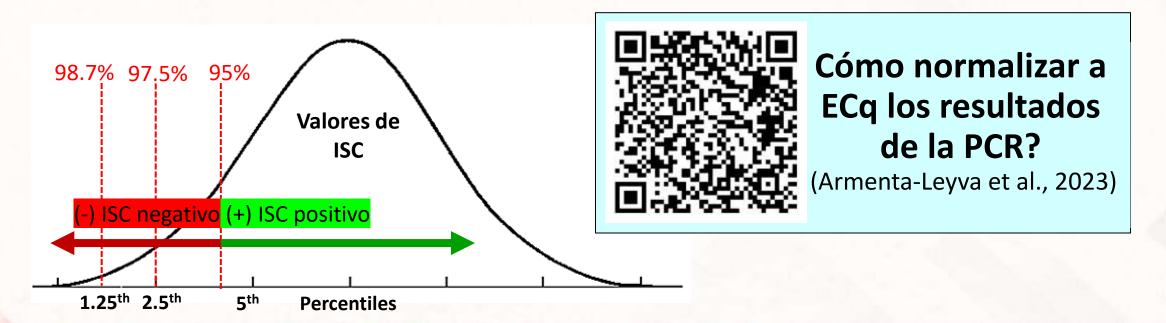
2. Establecer valores de referencia para diagnóstico de rutina.

Fluido oral (n = 150)


Suero (n = 150)

Hisopado fecal (n = 75)

Heces (n = 75)


2. Establecer valores de referencia para diagnóstico de rutina.

Valores límite de ECqs para ISC (95% CI)								
Muestra	98.7%	97.5%	95%					
Suero	1.26 (1.12, 1.40)	1.16 (1.10, 1.27)	1.11 (0.56, 1.23)					
Fluido oral	0.28 (0.22, 0.44)	0.25 (0.09, 0.36)	0.11 (0.03, 0.26)					
Heces	0.49 (0.18, 0.60)	0.37 (0.17, 0.55)	0.18 (0.17, 0.52)					
Hisopado fecal	0.27 (0.04, 0.44)	0.14 (0.03, 0.39)	0.04 (0.03, 0.34)					

2. Establecer valores de referencia para diagnóstico de rutina.

Valores límite de ECqs para ISC (95% CI)								
	Muestra	98.7%		97.5%	95%			
	Suero	1.26 (1 12 1 40)	1 16 (1 10 1 27)	1 11 (0 56	1.23)		
	Fluido oral	0.28 (Valor	es fuera de ra	ango =	0.26)		
	Heces	0.49 (0.52)			
	Hisopado fecal	0.27 (Re-testear, re-recolección!			0.34)		

Conclusiones

El manejo de PRRSV es trabajo en equipo

Las decisiones tomadas en granja para el manejo de PRRSV dependen de los resultados de las pruebas diagnósticas...

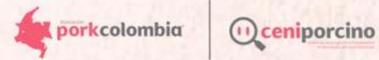
→ Sinergia granja + laboratorio para asegurar resultados precisos!

En granja:

- Toma y envío adecuado de muestra.
- Refrigeradores/congeladores funcionales.
- Recolectar suficiente muestra (ml) para la prueba diagnóstica.
- Envíar la muestra dentro de 24 horas.

En laboratorio:

- Manejo adecuado de muestra a la recepción.
- Uso de controles positivo y negativo en pruebas diagnósticas.
- Uso de controles endógenos en PCR.
- Congelar muestra después de testear.


Puntos clave

- La PCR y ELISA son igual de valiosas para el monitoreo!
- Muestras agregadas y muestreo fijo espacial reducen costos.
- La consistencia es clave: Pocas muestras + mismos corrales.
- El manejo adecuado de muestras evitará falsos negativos...
 - Suero: Evite temperaturas ≥ 20°C para optimizar la detección por PCR.
 - Fluidos orales: Congelar a -80°C y evitar >2 ciclos de congeladodescongelado para prevenir falsos negativos.

PORK-UN-

iGRACIAS!

Berenice Munguía Ramírez, MVZ, MSc.

Veterinary Diagnostic & Production Animal Medicine Iowa State University, Ames, IA, USA.

bmunguia@iastate.edu

